Description: SN Technologies allegedly misled Lockport City Schools about the performance of its AEGIS face and weapons detection systems, downplaying error rates for Black faces and weapon misidentification.
Entités
Voir toutes les entitésPrésumé : un système d'IA développé par SN Technologies et mis en œuvre par Lockport City School District, endommagé Black students.
Statistiques d'incidents
ID
214
Nombre de rapports
1
Date de l'incident
2020-01-02
Editeurs
Khoa Lam
Applied Taxonomies
Classifications de taxonomie CSETv1
Détails de la taxonomieIncident Number
The number of the incident in the AI Incident Database.
214
Special Interest Intangible Harm
An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
yes
Date of Incident Year
The year in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the year, estimate. Otherwise, leave blank.
Enter in the format of YYYY
2020
Date of Incident Month
The month in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the month, estimate. Otherwise, leave blank.
Enter in the format of MM
01
Date of Incident Day
The day on which the incident occurred. If a precise date is unavailable, leave blank.
Enter in the format of DD
Estimated Date
“Yes” if the data was estimated. “No” otherwise.
No
Classifications de taxonomie CSETv1_Annotator-1
Détails de la taxonomieIncident Number
The number of the incident in the AI Incident Database.
214
Special Interest Intangible Harm
An assessment of whether a special interest intangible harm occurred. This assessment does not consider the context of the intangible harm, if an AI was involved, or if there is characterizable class or subgroup of harmed entities. It is also not assessing if an intangible harm occurred. It is only asking if a special interest intangible harm occurred.
yes
Date of Incident Year
The year in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the year, estimate. Otherwise, leave blank.
Enter in the format of YYYY
2020
Date of Incident Month
The month in which the incident occurred. If there are multiple harms or occurrences of the incident, list the earliest. If a precise date is unavailable, but the available sources provide a basis for estimating the month, estimate. Otherwise, leave blank.
Enter in the format of MM
01
Date of Incident Day
The day on which the incident occurred. If a precise date is unavailable, leave blank.
Enter in the format of DD
Estimated Date
“Yes” if the data was estimated. “No” otherwise.
No
Rapports d'incidents
Chronologie du rapport
vice.com · 2020
- Afficher le rapport d'origine à sa source
- Voir le rapport sur l'Archive d'Internet
Des documents révèlent que la technologie de reconnaissance faciale des écoles Lockport a confondu les manches à balai avec des armes à feu et a mal identifié les étudiants noirs à des taux beaucoup plus élevés.
Depuis qu'ils ont appris que…
Variantes
Une "Variante" est un incident qui partage les mêmes facteurs de causalité, produit des dommages similaires et implique les mêmes systèmes intelligents qu'un incident d'IA connu. Plutôt que d'indexer les variantes comme des incidents entièrement distincts, nous listons les variations d'incidents sous le premier incident similaire soumis à la base de données. Contrairement aux autres types de soumission à la base de données des incidents, les variantes ne sont pas tenues d'avoir des rapports en preuve externes à la base de données des incidents. En savoir plus sur le document de recherche.